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A IISTRACT

An efllcient implementation of the Forward-Backward least Mean Square (FB1.MS)

adaptive line enhancer is presented in this paper, Without changinf:  the characteristics of the

FBLMS adaptive line enhancer [1], the proposed implementation technique reduces

multiplications by 25°/0 and additions by 12.5°/0 in two successive time samples in comparison to

that of the direct il~~~>lel~~elltatiol~  in both prediction and weight control. The proposed IXI.MS

architecture and algorithm can be applied to digital receivers for enhancing Signal-to-Noise Ratio

(SNR) to allow fast carrier acquisition and tracking in both stationary and nonstationary

environments.

1. 1NTROD1JCTION

Adaptive line enhancers (ALE) are usefhl in many areas including time-domain spectral

estimation for fast carrier acquisition [2-4]. For example, a fast carrier acquisition technique [2,7]

as shown in Figure 1 will be very useful for deep-space mission, especially in a nonstationary

environment or emergencies. Figure 1 shows the block diagram of using an ALE in the digital

receiver for both acquisition and tracking. First, the receiver is in the acquisition mode, Second,

when the uplink carrier is acquired as indicated by the lock detector, the switch is shifted to the
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tracking position and the tracking process takes over immediately. With this acquisition schcmc,

the uplink carrier can be acquired by a transponder in seconds (as opposed to minutes for the

Cassini tl-ansponder).  Although devised to support the space mission, the architecture of 1:131.MS

and the associated algol-ithm  proposed in this article are also applicable to other systems,

including fixed-ground and mobile communication systems. Note that this proposed ALE scheme

in the receiver needs residual carrier, and does not work for suppressed carrier cases.

A conventional ALE system using least mean square (1.MS) algorithm is depicted in

Figure,  2., The analysis of the Al .13 for enhancing the SNK to allow fast acquisition is given in [2].

The block diagram of a FBLMS adaptive line cnhancel  is shown in I;igure 3. The performance

analysis of the FBLMS  adaptive line enhancer is provided in [ 1], ‘1’he FBLMS adaptive line

enhancer algorithm enjoys approximately half t hc misadjust ment in comparison to that of the LM S

algorithln  [1]. However, it requires about twice the number of multiplications and additions of

the LMS algorithm. In this paper, an efllcient  implenwntation  of the fast F13LMS algorithm is

presented. This fast algorithm provides the same speed of convergence as that of the LMS

algorithm, and provides the same misadjustment as that of the FBLMS adaptive line enhancer, but

requires less multiplications and additions. The computational reduction is achieved by grouping

two successive predictor computations together and computing wei~ht  adaptation at every other

sampling time [5]. By using a radix-2 structure to manipulate time samples, redundant

computations embedded in two successive time samples can be removed via a new structure of

the fmt FBLMS algorithm.
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This paper  is organized as follows. lhe IJIII.N4S algorithm is reviewed in Section 11. The

fast 1’131 ,MS algorithm is derived and proposed in Section 111 3’he fast FBLMS algorithm

implementation is given in Section IV and simulation results arc presented in Section V. Finally,

conclusion is given in Section VI.

Il. J~ORWARI1-IIACKWAItD  I.MS ADA I)TIVE I.INE  ENI IANCER  ALGORITHM

The structure of the forward-backward LMS adalltive  line enhancer [ 1 ] is shown in Figure

3. “1’he forward and backward prediction errors are then defined, respectively, as follows:

Cf (t?) = x(n) - X7 (rl)v’(n)

Cb(r?) = X()?– N)- xb7 ()’/) JP’(rl)

where the superscript T denotes the transpose of a vector, and

X7(rI)= [X(n-l),  X(n-2),...,  X1/A-)])]

x 7’(t7) = [x(H-A’-t 1), X(1?-- N t 2),.,.,X(H)]
b

WT  (n) = [Wl  (H),  W* (n), . . . . w~ (n)]

(la)

(lb)

(It)

(id)

(le)

In any gradient algorithm, the coefficient vector W(n) is updated using

(2a)W(tl + 1)= W(}?) - p ${(’(n)* }

where IL is the adaptive step size and the ${e(n)2  } is the estimated gradient of the surface of

E{e(n)2 }. Note that E{. } denotes the expected value. In the forward-backward algorithm, e(n)2

= q- (n)z + eb (n)2 , and the gradient estimate is chosen as

;{~(n)2}  = ‘[ej  (n)~(n) + ebol)~~ (~)]. (2b)
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It is shown in [ 1 ] that llq. (2b) is an unbiased estimator of the griiclicnf. “1’his leads to the coemcient

update Hq.

If’(/l + 1) = w(n)+ /l[eJ (r?)x(ti)+eb  (n)X~ (f?)]. (2C)

This means that W(n-1 1 ) < W(n) in steady state when both forwald and backward errors arc

approaching zero.

111. ‘r]] IC FAsrl’ ]~o]?wA]tD-BAcKWAI?l)  LMS AI.GOR1”l’I I M

The fast I;131.MS algorithm is derived in this section by using tl~e 1-aclix-2 algorithm on time

samples. Both predictor ancl weights update sections are providecl  in detail

A, PRIHIIC’I$OR SIH’ION

We consider the con~putation  of two successive predictions in both forward and backward

directions with fixed weight coefficient W(n- 1 ). Aflel- regrouping, even and odd terms, the

forward predictor is obtained [5] and given in Eq. (3).

where YIT=[X(n -2), X(tI--4),..., XN+2), X(n XN)]N)]

BT =[x(n - 3), x(n--5),...,  x(n - N+l),xo?- N- 1)]

CT ==[x(l? -l), x(n-3),...,  x(rN+3),x(n(  A-+’+ 1)]

(3b)

(3C)

(3d)
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J%’. = [M’o(  l?- I),\!’* (H- 1),... >W)2(H(H  - 1)]7’ (3C)

J4’, = [\vl(/?-  1), IP30?- l),,,.,li’h.,  (/7- 1)]7 (3O

Similarly, backward predictor is obtained and given as follows:

d, ()? -- 1)

d, (n) _

[x,’ (H- 1)-I

1

[lf7 G”1 D@
. . W(n -1)=

L HI
(4a)

x,’ (H) - G 7 H7_n JK . . .

where
1’7 ~ [x(k N), J+I-N I 2),...,  x(4 JX@2)])] (4t))

C;7’ - [x(h - N + ]),x{n-  N -1 3),...,  xfi3),XOPV]V] (4C)

1]7’ = [x(j)- N -t 2),x(17-N I 4),..., x@- 2),x(7O] (4(I)

Eqs. (3a) and (4a) are approximations by virtue of updating the weight vector only once every

two cycles. The relationship bctwccn  the two sequence sets { A,B,C } and { F,G,H } is given as

follows:

l+’ = A, (5)

G = c, (6)

z-’}~ ,: A, (7)

where subscript r means the reversed order of the sequence and the z.-] lneans one delay unit of
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IIN co~-msponding  sequence and is equivalent to two time sample delays. Furlhermorc, we

obscxve the following relationships between G, 13, and C.

z“ ‘(; :: /), (8)

Z“’(; ,, ]) (9)

Afler perfot-ming the appropriate computation, Eq. (4a) can be rcwl-ittet~  as follows:

[
d,()?- 1) w(~o +- W,, i (1<- ~N ~,-1—
h)

—.A
db rI . 1 G’(J’VO + w,)- (G - }/)7’wl 1

(lo)

The computation of Eq. (4a) requires 2 inner products of length N, while that of Eq. (10)

requires only 3 inner products of length N/2 and N/2 additions to pel form WO+ W1. Similarly, by

combining llqs. (5-9), Eq. (3a) can be rewritten as follows

[

A

df(??- 1)1 rA7(W, i W,)- (h. A)7W, ]

J[
=A

df (n) AT(W,  -I W,)- (A - ~’)7 Wo 1

[AT(WO -i W,) -I .?-’(G -f]): W-l=
[ AT(WO -+ W]) – (’: – G), W(, J

(11)

Clearly, the sequences (G-H) and (F-G) of Eq. (1 O) are reused again in Bq. (11) but in reversed

order. The computation of Eq. (11) requires only 3 inner products of length N/2. The total

numbet of multiplications and additions required in both forward and backward predictor sections

for two successive computations is about 3N and 3 .5N, respectively. The total number of

lnultiplications  and additions required in F.qs. (1a) and ( 1 b) for two successive prediction section
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is 4N and 4( N- 1 ), Consequently, there arc about 25°/0 and 12.5°/0 s,avinss  in multiplications and

additions, wspcctively.

13. W1’.1GI 1’1’ [JP1)A-J’l; S1;C’1’ION.

We consider the weight coefficient updates now. Since weights arc explicitly computed at
every other time update using the look-ahead approach [ 6], the wcighl  update of Eq. (2c) can
be rewritten as follows:

/flfi’ ‘i ‘) ‘ ‘fi’ -j)+ +d~? - l)XOI - 1)+ c,fil -1) X,fiI - l)]+ &J(IOX(tI) -~ Q(H) X,(h)]

By combining l;qs.. (5-9), Eq. (12) is rewritten as follows:

web(h) + eb(rl - 1))+ (1” -- G)c,@ - 1)1
‘“%(cJW+ CbfiI-~))--(G -Web(H) j

(13)

The vectors (F-G) and (G-H) are once more employed in Eq. (13). Notice that the term

p[A(@n)  +- tin-l)) +- G(eb(n) + eb(n-l))] is computed only once and the sum is applied to both

W. and WI for updates. The total number of multiplications and ad(iitions  in Eq. (13) is about 3N

and 3.5N respectively. However, the total number of multiplications and additions of Eq. (2c) for
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two adaptations is 4N and 4( N- I ). Consequently, 25°/0 of multiplications and 12.5°/0  of a(iditions

arc saved by using Ilq. (13) in comparison with that of Rq. (2c).

IV. IM [’LEM ItN”I’ATION

I’he architecture of the fast FBLMS algolithm is depicted in Figure 4. A switching circuit

is employed afier the adaptive line enhancer and the switch rate (from C to A or from A to C) is

the same as the sampling rate. ‘l’he switching circuit is switched between points C and A

alternately. Sequences C and A arc generated at a rate of l/(2T)  accordingly. The sequence 11 is

a delayed version of the sequence C. By using a radix-2 structure, sequences {B-A} ancl {A-C}

are then generated at the upper- and lower-lag, respectively. By using the sequence {B-A}, inner

products (B-A)q’W1 and Z-l(G-l  1)’1 W, are generated at the upper-  and lower-lag of the upper

forward-backward tapped-delay-line structure, respectively. Similarly, by using the sequence {A-

C}, inner products (A-C)~’WO  and (F-G)lWO are generated at the upper- and lower-lag of the

lower forward-backward tapped-delay-line structure, res~)ectively,  Note that vectors F, G, and 11

are defined in Eqs. (5), (6), and (7), respectively. ]nncr pI oducts  of A’] (WO+ W 1) ancl G’l”(WO+  WI)

are computed at the top- and bottom-portion of the fast FBI.MS architecture, respectively.

Finally, forward errors {~n) and tin-1)} and backtvard  errors { eb(n- 1 ) and e~(n-2)  } are

computed at the right hand side of Figure 4. In order to subtract the term of z-l(G-H)T’Wl  and

form the backward error, a delay unit is applied to the output branch of the inner product of

G“’(WO+-WI).  Consequently, the corresponding backward error is delayed from e~(n) to eb(n-2).

Notice that this radix-2 str-ucture concept can be applie(i  again to the upper and lower forward-



backward taped-delay-line portion of the fast l; II1.MS algorithm to ful-thcx  reduce the number of

I]illltil)lic,atiot]s  and additions.

Although the fast F’BLMS architecture sho\~ n in Figure 4 is Inore complex than [he

}~fll.MS  shown in Figure 3, the structure is still very regular. In fact, the fast M3LMS architecture

is consisted of radix-2, forwa[-d  LMS, and FBI.h4S structures. “1’he increased complexity over the

FII1,MS algorithm is not significant, thel-efore  the fas{ I; III.MS algorithm then can be easily

implemented with digital signal processors.

S1 MULATION RESIJ1  ;1S

adaptive line enhancer with 6-weight (N= 6) is chosen as an example. l’hc input signal is a

sinusoid of frequency fO contaminated by white noise. Computer simulations are conducted for

the misadjustment  calculation by using forward I.MS, FBLMS, and fast FBLMS  algorithms. l’he

misadjustment  [ 1 ] is computed after convergence as

Extra Output Power Due to Weight Jittering
M z, --------------------------- ------------------------------ .

Minimum Output Power

E[A(n)T$(x,x) A(n)]
-—--- --- ” ------------------------------.,---

where

E[@n)21.pt

A(n)=W(n)-WoPt

$(x,x)=E[X(n)X’(n)]

E[e(n)2]oPt  = E[x(n)2] - W~Pt ‘E[x(n)X(n)]

follows

(14)

(15)

(16)

(17)
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Table 1 shows the measured misadjustments  for various values of Signal-to-Noise power Ratio

(SNR) at step siz.c IL = 2-’. Apparently, the excess error ~]owcr for both l;lIIMS and fast FB1.MS

algorithms is appr-oximatcly half that of the forward Lh4S algori(hm  at the 10 dD SNR. The

improvement of the misadjustment by using both FBLMS and fast f711J .MS algoi-ithms  over that

of the forward 1.MS algorithm is limited at the SNR around O dll. 1 Iowcvcr, the misadjustmcnt

of the fast FBLMS algorithm is about the same as that of the FB1, MS algorithm. Furthermore, it

is observed in “1’able 1 that at higher SNR the misadjustmcnt  increases (for a given step size p = 2-8).

‘J’his is because the minimum output error power decreases much mor c rapidly than the extra

output power due to weight jittering, as depicted by Eq. (14). ‘]’his high misadjustment  is

significantly rcduccd  when the step size p is cut to 2“10 as shown in “l-able 11.

Table 11 shows the measured misadjustmcnts  fol various values of the step size and the

frequency f~ at SNR = 10 dB. Apparently, the excess error power fol both FBI-MS and fast

FJ3LMS algorithms is approximately half that of the forward LMS algorithm at the step size Ii =

2 -8 and p = 2-10. The misadjustment is much r-educed when the step size is small by using any

algorithm. Again, the misadjustment of the fast FBLMS algorithm is about the same as that of the

FBLMS algorithm. The E[e(n)2]op, used to derive the misadjustrnent is computed by using 500

samples in each run. The misadjustment results listed in Tables 1 and II were obtained by

averaging 100 runs of the excess error power curves after convergence has been achieved.
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Table 1 A Comparison 13etween  the Misacljustment Povwrs  of 3’hrcc Algorithms at p = 2-X

-------- . . . . ------------------------ --------------------------------------------------  ---------

S I R fo YO Misadjustrnent
--------------------------------------  -------------------------

Forwarci LMS FIILMS Fast I’B1.MS
------  ----- ------------------------ ---------------------------------------------------  ---------

0 .1 3.04 2.75 2,75
3 .1 3.74 2.84 2,93

10 .1 32.50 13.77 16.95
------ --------------------------------------------------------------------------------------

‘l’able 11. A Comparison Between the Misadjustment  Powers of Three Algorithms
Using fixed SNR =- 10 d]] with different p

-------  ------------------------------------------------------------------------------------

p fo 0/0 Misadjustment
--------------------------------------  -------------- -----------

Forward I,MS FII1.MS Fast FBI ,MS
------------------------------------------------------------------- ------------------------
2-8 .1667 31.34 14,47 16.032-8 .1 32.5 13.77 16,95
2-10 .1667 3.06 2.05 1.99
2-10 .1 2.33 1.24 1.30
------- ------------------------------------------------------------  -------------------------

l;igures  5(a), (b), and (c) show a typical excess error power versus n plot at f. = 1/6, step

size = 2- 8

, and SNR = 10 dB for the forward LMS, FBLMS, and fast FT3LMS  algorithms,

respectively. Figure 5(d) shows the excess error powel  at the steady state. It is clear that the

performance of the fast FBLMS algorithm is about the same as that of the FBLMS algorithm.



VI. CONC1,1JS1ON

The fast forward-backward LMS algorithm presented in this paper shows that the number

of al ithmetic operations in [ 1 ] can be reduced without degrading its performance. In the forwal-d  -

backward predictor section, 25% ofmuhiplications and 1 ?..5?4o of addit  ions are saved in each two

successive operations. Similarly, in the weight control section, 25°/0 of multiplications and 12.5°/0

of additions are saved in each two adaptations. Simulation results indicate that misadjustment

improvements for both F131.MS and fast IW1.MS algorithms over the conventional 1.MS

algorithm is about 50°/0 at high SNR, When the SNR is low, the misadjustment  improvement for

both IWI.MS and fast FBLMS algorithms over the conventional I.MS algorithm is less than 50?L0.

Notice that this fast forward-backward 1.MS algorithm is well suited for il~l~)lel~~ct~tatiotl  on

AS](.;S and digital signal processors. This illll~lell~clltatio]~  method can be generalized by using

higher than 2 steps of look-ahead, Further computational savings are possible with Iimitcd cost

on controlling appropriate data flow. This fast FII1.MS adaptive line enhancer can be easily

integl ated together with either a conventional Voltage Controlled Oscillator (VCO) in a closed

loop for acquisition/tracking as present deep space transponder, or Numerical Control Oscillator

(NCO) in an open loop scheme for acquiring and trackinf~,  the carrier signal as future deep space

transponders.
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Figure 1. The block diagram of using ALE in the digitaI receiver for both acquisition
and tracking.
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